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Abstract

This paper uses FDIC call report data to calibrate the �nancial net-
work of CDS obligations. It shows how, given the maladaptation of banks
to perverse incentives of the Joint Agencies Rule 66 (Federal Regulation
56914 and 59622) and Basel II Credit Risk Transfer (CRT) frameworks,
regulatory policy might actually have unintentionally intensi�ed systemic
risk and instability as the use of CDS contracts increased. In particular,
the paper shows that, in the years following the introduction of Basel II,
the topological complexion of the CDS market was progressively altered
as the entrenchment of regulations resulted in a growing degree of clus-
tering and concentration of CDS obligations amongst a few large banks.
Moreover, it shows that inadequately accounting for contingent payments
under credit derivatives contracts due to the assumed transfer of risk un-
der CRT can ultimately result in the undercapitalisation of banks where
market conditions imply that contracts are not easily replaced upon the
failure of trade counterparties.

key discussion point - Financial networks, Financial contagion, Network topol-
ogy, Basel II, Credit risk transfer, Credit default swaps (CDS), Regulatory policy
monitoring, Systemic risk

1 Introduction

Markose et al., (2012) illustrated the manner in which the dynamics of perverse

incentives that arise from the credit risk mitigation based regulatory frame-

works introduced under the January 1, 2002 Joint Agencies Rule 66 (Federal

Regulation 56914 and 59622) and crystallised within Basel II (hereon in both

*Oluwasegun Bewaji is currently with the Canadian Payments Association, Ottawa,
Canada, e-mail: sbewaji@cognitivemcroeconomics.co.
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Figure 1: CDS Buy and Sell Side Market Participation by Counterparty Type
2006Q4

Source: British Bankers Association

will be referred to as Basel II) could result in the rapid accumulation of res-

idential mortgage-backed securities (RMBSs) holding and credit default swap

(CDS) exposures on bank balance sheets. It was stipulated that banks' very

act of adhering to the rules on credit risk transfer (CRT) that underpinned the

Basel II regulatory regime gave rise to the use of credit derivatives to insure

against the default risk on reference RMBS assets that dominated the �nancial

landscape between 2002 and 2007.1 Regulations ensured that banks became

the leading buyers and sellers of credit protection within this market, which

at its peak stood at US$58tn, and they have, consequently, become vulnerable

(Figures 1 and 2).

This vulnerability has arisen due to the structural weaknesses of the CDS market

and the issues of poor regulatory policy design highlighted in the previous paper.

Representing over 98% of the market for credit derivatives, CDS contracts have

1The CDS market consisting of banks and non-bank �nancial intermediaries has since 2008,
evolved into an information source, guiding market expectations on the default probability of
the reference entity.
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Figure 2: CDS Total Notional Outstanding 2006Q4 to 2010Q2 (US$ Billions)

Notes: (1) Notional Outstanding (right hand axis) are the sum of CDS contracts bought (or equiva-
lently sold) for all contracts in aggregate on a per-trade basis. For example, a transaction of US$10m
notional between buyer and seller of protection is reported as one contract for US$10m gross no-
tional, as opposed to two contracts for $20 million notional. (2) Market Value (left hand axis) is the
sum of the net protection bought by net buyers (or equivalently net protection sold by net sellers)
and represents the maximum possible net funds transfers between net sellers of protection and net
buyers of protection that could be required upon the occurrence of a credit event.

played an inimitable, pervasive, and ruinous role in the global �nancial crisis

of 2007-2008 that originated from the US subprime crisis and quickly evolved

into an epidemic that resulted in the European sovereign debt crisis. This

paper is concerned with modelling the speci�c weakness stemming from the large

concentration of trading activity amongst small numbers of key participants in

the CDS market.

Without exception, the growth of �nancial innovation enabling private sector

liquidity and leverage creation collateralised by pro-cyclically sensitive assets

(i.e. those assets, such as RMBSs that banks used as collateral through ABCP

conduits in the repo market and that lose value during economic downtowns)

were a central �xture of the 2007-2008 crisis. As noted in the previous paper,

regulators sought to tighten rules that led banks to take risky assets o� their

balance sheets by employing measures and rules that encouraged banks to hold

assets on their balance sheets. This took the form of the central role of CDSs in
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CRT and synthetic securitisation under Basel II.2 his new regulatory treatment

of CRT accelerated the leverage process and ultimately increased the connectiv-

ity between depository institutions and unregulated non-depository �nancial in-

termediaries and the wider derivatives markets. American International Group

(AIG), for instance, sold protection of approximately $1.8tn notional of CDSs,

guaranteeing payment in the case of defaults or other credit events on mortgage-

backed securities. Whilst the majority of these CDS contracts required AIG to

post collateral as the credit quality of the referenced securities (or AIG's own

credit rating) deteriorated, AIG was not required to post any initial margins

on these contracts, because this was deemed unnecessary given AIG's triple-A

rating. As the subprime crisis worsened, AIG faced margin calls that it could

not meet. To avert bankruptcy and a wider risk of global �nancial meltdown,

the Federal Reserve and the Treasury injected tens of billions of dollars into

AIG, which in turn went to its derivatives counterparties (see O�ce of the

Special Inspector General for the Troubled Asset Relief Program [SIGTARP],

Factors A�ecting E�orts to Limit Payments to AIG Counterparties, November

17, 2009).

The degree to which the CRT framework of the 2002 and 2004 regulations

were structurally unstable is akin to banks and other net protection buyers of

CDSs purchasing insurance from the passengers on the Titanic. The demise and

subsequent absorption of Merrill Lynch, at the time the biggest underwriter of

collateralised debt obligations (CDOs), by Bank of America was, for example,

the result of ratings. downgrades of multiple bond insurers such as ACA Capital

2Under the 1988 Basel Accord, banks were required to hold 8% in regulatory capital charges
against their default risky assets. With a risk weighting of 50% this meant that banks would
hold 4% capital against residential mortgage loans. Under the 2002 Joint Agencies Rule 66
and the 2004 Basel Accord, the same residential mortgage loan could become subject to as
little as a 1.6% capital charge through CRT under synthetic securitisation. ECB (2009) points
out that in its 2007 �ling to the SEC, AIG FP, the hedge fund arm of American International
Group (AIG), categorically eluded to providing CDS guarantees to European banks in order
for these banks to reduce their regulatory capital requirements.
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Holdings Inc., which su�ered a 12 notch fall to CCC in its debt rating, making

over US$2.6bn in default protection acquired by Merrill worthless.3

By encouraging CRT through the use of CDSs, regulators who wanted to foster

an economically e�ective means by which banks could diversify away credit risks

from balance sheet exposures by passing them unto triple-A rated institutions

better placed to manage them created systemically unsustainable outcomes.

Darby (1994), Persuad (2002), Lucas et al. (2007), and Gibson (2007) have

argued that inappropriate structural form and a high degree of concentration

can scupper any bene�ts perceivable from CRT. That CRT enables banks to

make signi�cant regulatory capital savings and expand short-term assets, could

automatically improve their balance sheet diversi�cation at the macro level was

not a sustainable presumption on the part of regulators. The whole was not the

some of its parts. As seen in the 2007-2008 crisis, in which contractual obliga-

tions were amongst the same subset of banks, the initial diversi�cation eroded

away as the network of obligations became highly connected; this concentra-

tion then bred systemic risk and a system too interconnected to fail (TITF).

Moreover, despite their intention to push banks towards using CDSs to manage

balance sheet risks and the accessibility of the data to regulators, no analysis

was undertaken to identify or measure the extent to which growing the struc-

tural concentration of CDS contracts could lead to systemic risk. This paper

shows that the series of contractual obligations could have been constructed and

the topological fragility of the �nancial network de�ned. Moreover, because the

purpose of this thesis is to highlight the use of agent- based computational eco-

nomics (ACE) in the design and testing of policy, the analysis will focus on the

macro level, rather than the systemic risk of individual entities.

The focus of the analysis is on the US CDS market and considers only the

3The reader is referred to the Bloomberg News article of January 17,
2008 Merrill Lynch Plans to Write O� ACA Bond Insurance (Update1)� at
http://www.bloomberg.com/apps/news?pid =newsarchive&sid=abJ54xMm7k4Y.
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banks that participated in the CDS market and for which balance sheet data

are available through the FDIC. During the period 2004-2008, between 26 and

38 banks actively engaged in the CDS market. Of these, 5 banks in 2006 (JP-

Morgan, Citibank, Bank of America, HSBC, and Wachovia) accounted for 95%

of the gross notional in CDS sales. By 2007 this market share had increased to

97%. To visually capture the nature of the network of contractual obligations

with such a high concentration of CDS sales associated with these 5 banks, the

analysis herein utilises the network model that Markose et al. (2010) devised.

Because the primary objective here is to see if and how ACE models could have

been used in the ex post assessment of policy and, at the very least, to pick up

the early warning signs of potential systemic risks, the analysis also looks back

to the credit derivatives market structure prior to the full inception of the Basel

II rules in 2004 and will compare this against market conditions during the US

housing bubble of 2006 and also at the height of the subprime crisis of 2007.

Furthermore, the analysis is carried out on a worst-case-scenario basis. It is

therefore implicitly assumed in the use of gross notional data on CDS, that

without a central repository for full examination of all bilateral trade informa-

tion, at the height of panic during crisis situations, the replacement of lost credit

guarantees upon the failure of a trade counterparty is not readily feasible. This

does not, however, negate the use of bilateral o�sets during trade and collat-

eral settlement. For the purpose of this analysis, it is simply assumed that full

market look-through is not readily available from an operational perspective to

properly reassign contracts amongst surviving banks during high intensity mo-

ments as in �nancial crises. This assumption is later relaxed and the two sets

of results are compared.

The paper identi�es the extent to which banks' CDS exposures were highly con-

centrated to the point that the failure of highly connected banks could trigger an
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extreme socialised loss of capital that would see similarly connected banks col-

lapse. Section 2 is an overview of the structure of CDS trades and the systemic

risk that arises from them given practices such as trade o�setting.4 Section 3

reviews the economic literature on �nancial networks and the empirical research

methodology under a graph theoretic framework. Section 4 discusses the FDIC

data used in modelling. Section 5 reviews the simulation results using two dis-

tinct network topologies and measures of credit derivatives exposures. The �nal

section presents concluding remarks to the paper.

2 Credit Default Swaps and their Potential for

Systemic Risk

2.1 Structural Inconsistency of CDS Contracts

CDSs are bilateral credit derivatives contracts that fall into one of two primary

classes of trade based on their underlying: single name CDSs and CDS indices.

Single- name CDSs are contracts typically speci�ed over a 5-year period in

which payo�s are linked to a credit event such as default, restructuring of debt,

or bankruptcy of the underlying corporate or sovereign entity. The credit event

in turn triggers a payment by the protection seller. CDS index trades, on the

other hand, reference an underlying index/basket of entities and trade cash �ows

are associated with credit events on individual constituents of the underlying

index; these events are similar to those on single name trades.

Both single-name and CDS index contracts have tended to be bilaterally and

privately negotiated, and respective parties to any given trade are bound to the

contract until the trade maturity date. In both instances the protection buyer

4In a trade o�set, counterparties close out positions by entering new trades of the same
value in the opposite direction to that they wish to close out. So for instance a US$10
protection selling position could be closed out by taking an o�setting trade position to buy
US$10 of credit protection on the same reference entity as the original trade.
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makes ongoing periodic premium payments that are dictated by daily �uctua-

tions in the credit spread on the underlying credit exposure to the protection

seller until the credit event. Credit spreads function as a measure of the credit

worthiness and, more speci�cally, the probability of default and recovery value

of the reference assets. Spreads are quoted as a percentage of the CDS gross

notional at the start of the contract or inception of the CDS index. High spreads

indicate increasing market expectations of default with a jump to default spike

at the point of the credit event while, low spreads are suggestive of lower default

risk. This link between CDS spreads and the probability of default has an in-

teresting impact on CDS protection sellers also. When a protection seller faces

increasing credit spreads on CDS contracts for which it is the reference entity,

it will struggle to raise liquidity and thus increase its likelihood of insolvency.

As Du�e et al. (2010) illustrate in citing the Bear Stearns collapse, the loss

of liquidity could be triggered by a run on the collateral posted by the protec-

tion seller. This raises the issue of counterparty credit risk and underscores the

importance of the gross notional value of exposures.

The potential also exists for bear raids and speculative naked CDS positions

(see Figure 3).5 In Figure 3 the naked CDS position is held by D, which buys

CDS protection from B against a default by A, though D does not, in fact, have

any direct credit exposure to A. Consequently, it could be in D's interests to

instigate a sequence of events, such as the short selling of debt issued by A that

would lead to the demise of A. If C is under-collateralised, the default in A

might also cause C to fail.

5A naked CDS position is one in which the protection buy does not hold a physical exposure
to the reference entity for which it is buying protection. Instead, it is speculating on the
eventual default of that reference entity to either gain on cash settlement at default or by
o�setting the position at a higher spread. Consequently CDS exposures are not one-for-one
matches to the underlying obligation but can also substantially exceed the notional value of
the underlying debt. Protection buyers thus become empty creditors indi�erent to and in some
cases bene�ting the default of the CDS underlying (Hu and Black, 2008; Yavorsky, 2009).
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Figure 3: Bear Raid and Naked CDS

Source: Markose et al. (2010, pp. 16).

CDS markets can therefore be seen as highly self-re�exive. In fact, the ECB

(2009) reports that an increasing correlation between (CDS) counterparties and

(CDS) reference entities has recently taken on a new dimension in those coun-

tries whose banking sector has been supported by public authorities (p. 25).

This in turn has exposed sovereigns to increased CDS spreads as they engaged

in national bank-rescue packages. As Figure 3 shows, empty creditors could buy

protection against these governments, short their debt, and trigger a sovereign

debt crisis due to their national bank rescue packages. This cyclicality in the as-

sociation of gross notional exposures of a counterparty or its creditors/sponsors

to the credit quality of the underlying is also referred to as wrong way risk and

is di�cult to model using traditional methods for pricing CDSs.

2.2 CDS Chain Settlement Risk and Systemic Risk

A further and possibly the most esoteric risk that leads to systemic failure in

the CDS market sterns from a settlement-failure cascade and/or related coun-
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terparty abstraction. This arises when a party to a trade is unable to deliver

in the short term during a default event, causing other market participants to

cease outgoing payments. This was the case during the impactful Freddy Mac

and Fannie Mae defaults.

In a highly stylised explanation, consider, as shown in Figure 4 some �nancial

intermediary, A, that has exposures to some reference entity, XYZ Debt. A

wishes to mitigate its balance sheet credit risk exposure to XYZ Debt and

reduce regulatory capital charges on this asset, so it buys CDS credit protection

from B. B, now exposed to XYZ Debt's default risk, seeks to hedge this risk and

buys protection from C. C initially holds this net exposure, but then decides to

o�set and buys protection from D, which o�sets the exposure with E, E with F

and F with G. Now assuming that G, after the passage of time, wishes to o�set

this exposure and credit spreads have moved such that A receive a basis spread

income from selling protection to G relative to what it pays to B, then A will

sell protection to G and thus enable G to o�set its exposure to XYZ Debt.

For expositional simplicity, now assume a default event of XYZ Debt that re-

quires the delivery of US$10million in cash or securities within three business

days of the default noti�cation. If all of the CDS counterparties that have

carried out their various bilateral counterparty risk analysis conclude that their

counterparties will fail to pay with a probability of 0.01%, then each of the seven

banks could assume a crude counterparty exposure risk of US$10million x 0.01%

= US$1,000. However, because of the exposure settlement chain, A in reality

faces the risk of the default of not just B, but also C or any other bank in the

chain. Thus, the true exposure of A in the chain is 6 approximately US$6,000

(i.e. US$10m ×
[
1− (1− 0.01%)

6
]
). This risk increases as the chain length

increases and the systemic risk exposure at default may even exceed the value of
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Figure 4: CDS O�setting: Default Payment Settlement Chain

Notes: The settlement chain starts with bank A buying for example US$10m in credit protection
against a default in XYZ Debt from bank B. Bank B then o�sets its exposure with A by purchasing
credit protection from bank C against XYZ. Bank C latter o�sets this exposure with protection
purchases from bank D, which likewise buys credit protection from E. This chain continues with
bank A selling protection to bank G against the XYZ exposure. Assuming a 0.01% probability
that each CDS counterparty fails to pay in the event of XYZ Debt's default, then bank A faces a
counterparty exposure risk of US$10m x (1-(1-0.01%)) 6 or US$6,000.

the underlying exposure to XYZ Debt. The localised o�setting of risk common

in the interdealer market means the chain is only as strong as its weakest link.

Any one of the counterparties' default or refusal to pay will potentially result

in a cascading sequence of defaults by others in the chain should they not be

su�ciently collateralised to meet payment obligations.

3 Empirical Methodology

3.1 Overview of Multi-Agent Networks

The representation of linkages between agents, be they from the physical sci-

ences, computer sciences, or social sciences and economics, through the mathe-

matics of network analysis or graph theorem is a longstanding tradition in the

literature (Barabasi and Albert, 1999; Jackson, 2005; Jackson and Watts, 2002;
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Montayo and Sole, 2001; Newman, 2003; Watts, 1999; Watts and Strogatz,

1998). With speci�c regard to systemic risk in �nancial networks, Allen and

Gale (2001) study the behaviour of the banking system in response to conta-

gion under di�erent network topologies. Allen and Gale and Nier et al. (2007)

both argue that sparse networks are less stable than fully connected networks.

However, it should be noted that these studies ignore the forced or even strate-

gic behaviour that arises from a failure. For example, a bank that witnesses

the loss of CDS cover that it purchased for balance sheet and regulatory cap-

ital management will have to shift that exposure elsewhere or repatriate the

credit risk and increase its risk capital. By so doing, it may �nd it is locking in

mark-to-market losses as the value of underlying assets decline.

Diamond and Dybvig (1983) use shocks induced by the random exchange of

interbank deposits to show that complete networks or a complete structure of

claims with greater connectivity between banks improve the �nancial system's

resilience to contagion. Using shocks caused by deposit drawdowns, in which

depositors withdraw funds out of fear that the banks will fail due to losses

in the interbank market, Freixas et al. (2000) arrive at a similar conclusion.

Both studies stipulate that the ability to transfer losses from the failure of any

given bank to the portfolios of other banks improves the stability of the network.

Increasing network density, the degree of connectivity between individual nodes,

has been shown to enhance the stability of �nancial networks (Dasgupta, 2004;

Leitner, 2005; Vivier-Lirimont, 2004). Leitner also shows that allowing internal

bailouts improves stability insofar as agents are willing to bail out other agents

to prevent wider systemic meltdowns.

Numerous empirical studies have extended the body of theoretical work to mea-

sure the resilience of a number of interbank lending markets to systemic risk.

Sheldon and Maurer (1998), using maximised entropy to draw out the con-
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nections between banks, study the Swiss interbank market. Other interbank

markets covered in the literature include the US Fed-funds market (Fur�ne,

2003); the German interbank market (Memmel and Stein, 2008; Upper and

Worms, 2004); the UK market (Well, 2004); the market in Belgium (Degryse

and Nguyen, 2004); the Dutch interbank market (Van Lelyveld and Liedrop,

2004); the Italian interbank market (Iori et al., 2005) and the Portuguese inter-

bank lending market (Cocco et al., 2009). More recently, this body of research

has been extended to use actual CDS notional data for 26 FDIC insured banks

(Markose et al., 2010) and CDS spread data on the largest 43-46 North Ameri-

can and European institutions (Eichengreen et al., 2009; Yang and Zhou, 2010)

to identify the extent of interconnectedness in the CDS market. In addition,

Yenilmez and Saltoglu (2011) suggest the use of entropy measures as a basis

for determining the systemic signi�cance of �nancial institutions. On the other

hand, Markose (2012a) and Markose et al. (2011, 2012b) propose the use of

centrality measures in de�ning a systemic risk tax on super spreaders.

A common feature of these studies has been the characterisation of the �nancial

networks as dense localised clusters with short paths lengths between nodes or

agents. Barabasi and Albert (1999) note that these small-world networks show

node connectivity, which is highly skewed with fat tails or follows power law

distributions. Barabasi and Albert use preferential attachment to obtain the

power law statistics by setting node sizes as a function of their existing size or

connectivity. In this paper, two network topological constructions of the CDS

network are considered: (a) a market share based small-world network6 and

(b) a random graph based network, which randomly draws connections between

6A small-world network is a graph in which the majority of nodes are not direct neighbors
of one another, but may be reached from every other by a small number of steps. More
precisely, a small- world network is de�ned as a network where the typical distance L (the
number of required steps) between two randomly selected nodes grows proportionally to the
logarithm of the number of nodes (N) in the network. That is:
L ∝ Log(N).
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nodes subject to the condition that the total contractual obligations of the banks

are consistent with the empirical data.

Furthermore, when considering the market for CDS and appropriate empirical

data used in constructing the network of contractual obligations, it is impor-

tant to note that although the International Swaps and Derivatives Association

(ISDA) cautions about the use of gross notional amounts as a measure of risk,7

the use of gross positive and negative fair value amounts depend on the normal

functioning of markets. The normal functioning of markets, by de�nition, re-

quires that contracts can be exchanged in a current transaction between willing

parties, other than in a forced or liquidation sales (Board of Governors of the

Federal Reserve System, 2004; International Bank for Reconstruction and De-

velopment, 2011, ISDA, 2012; O�ce of the Comptroller of the Currency, 2012).

However, this does not necessarily account for the loss of guarantees in the event

of the failure of a guarantor under market-crisis circumstances. O'Kane and

Turnbull (2003) distinguish between the transfer of funds in the event of credit

events and business-as-usual mark-to-market valuation of CDS contracts. Fair

value accounting rules under the International Accounting Standards Board's

IAS 39 and its successor the International Financial Reporting Standards Foun-

dation's IFRS 9, simply stipulate that assets be valued at the current cost of

replacing existing positions in those assets either using available market prices

or an approved valuation model where no market price is readily available.

Consequently, fair value accounting for CDS exposures as O'Kane and Turnbull

illustrate need only account for ongoing transfers on the premium leg and not

the contingent payment of the underlying face value of protection bought or

7 See �Understanding Notional Amount� on the ISDA CDS Marketplace Market Overview

site http://www.isdacdsmarketplace.com/market_overview/understanding_notional_amount

(accessed July 2014).
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sold. Thus, in an environment in which contracts are not easily replaced, the

failure of a protection seller potentially exposes the bene�ciary to higher capital

charges against the previously insured credit exposures.

Notwithstanding, Pozen (2009), in citing SEC (2008, Exhibit II.4: Percentage

of Assets Measured at Fair Value by Industry � As of First Quarter-End), notes

that as of the end of 2008Q1, only 31% of bank assets where accounted for

on a fair value basis, with the remainder accounted for at historical cost. Fur-

thermore, Avdjiev et al. (2011) illustrate a duality in the reporting of CDS

exposures as part of the measure of guarantees extended� by BIS supervised

banks. The authors indicate that BIS consolidated banking statistics entries will

generally entail a bank reporting buy-side CDS exposures at gross notional, if

that bank holds the underlying security. However, when the bank does not own

the underlying security, it is required to report the positive fair value of CDS

protection purchased as derivatives exposures against its counterparty. Mindful

of this dualism in reporting and the impact of di�erent market conditions on the

credit risk exposure of banks, the analysis in this paper uses both gross notional

and gross fair value measurements.

3.2 Graph Theoretic Framework for the Multi-Agent CDS

Network

As noted, graph theory has proved to be a useful tool to describe contractual

relationships within �nancial networks. Under the graph theoretic framework,

a graph Gt (V,E)with N vertices and M edges at time t is comprised of a set

of unordered nodes, V (G) = {n1, n2, n3, . . . , nN−1, nN} and edges E (G) =

{e1, e2, e3, . . . , eM−1, eM}. If there is an edge e ∈ E connecting adjacent or

neighbour nodes i and j , then e is incident to nodes i and j , which are

the endpoints or endvertices of e. Denoting such an edge as e
(−→
i, j
)
indicates
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that e is a directed edge that transfers a �ow from the source i to the sink j.

Conversely, e
(←−
i, j
)
represents a �ow from j to i, whilst e

(←−
i, i
)
represents a

�ow from i to itself and is called a loop; e
(←→
i, j
)
is a multiple edge connecting

nodes i and j. A graph consisting of directed edges is referred to as a directed

graph (digraph), which can be simple if it has no loops or multiple edges, or as

a directed multigraph if it consists of loops and/or multiple edges. Furthermore,

directed edges imply that the order of the nodes matter, and the endpoints are

thus ordered pairs. This is in contrast to an undirected graph, which is de�ned

in terms of unordered pairs of nodes where the edge connecting j to i is that

same as the edge connecting i to j. Moreover, when each edge has a weight

wij�which may be used to signify the strength or e�ectiveness of connections

between nodes i and j �greater than one, the graph is referred to as a weighted

graph.

Graphs can also be represented in the mathematical form of a matrix. Thus

graph Gt (V,E)can be described as a square N x N adjacency matrix A whose

entries aij (i, j = 1, 2, 3, ..., N − 1, N) are binary observations set to 1 if an edge

exists that connects nodes i and j , or 0 otherwise. There are many ways in

which to specify the entries of the adjacency matrix and ultimately construct the

graph. This can be accomplished using empirical data in which the relationship

between nodes is known or by selecting both the nodes and edges between nodes

either using known behavioural facts about relationships or a random process.

This latter case is referred to as a random graph, and such a graph re�ects the

probability distribution with which it was created.
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3.3 Key Network Statistical Measures

The local and global structures of graphs have been characterised by a number

of statistical measures, including node degree, the clustering coe�cient, path

length, density, centrality, and so on. The degree ki of a node i refers to the

number of edges incident to the node and is speci�ed as:

ki =
∑
j∈V

aj,i (1)

and

ki =
∑
i∈V

ki (2)

is the total degree across all nodes in the graph. The average degree across all

nodes in the graph is a measure of the extent to which the graph is connected.

Diestel (2005) details methods of identifying connected components of a graph.

The density�the extent to which nodes in the network are linked relative to all

possible linkages in a complete graph�of the graph can thus be expressed as

ΦG =
K

N (N − 1)
(3)

Note that because nodes in a directed graph potentially having multiple ingoing

and outgoing edges, it is also possible to de�ne in-degree ( k+i ) and out-degree

( k−i ) distributions for the graph. In a weighted graph, the degree of the each

node may be represented in terms of the sum of all neighbouring edge weights;

that is, the node strength

si =
∑
j∈V

aj,iwj,i (4)
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The signi�cance of a node within a graph is also captured by its local clustering

coe�cient. Watts and Strogatz (1998) introduced this measure to determine

how close a node's neighbours are to being a clique.8 That is, the extent to which

a subset of nodes, connected to some given node in the graph, are connected.

The clustering coe�cient measures the tendency for nodes to cluster together

in a graph. With respect to weighted graphs, Barrat et al. (2004) specify the

local clustering coe�cient as

ci =
1

ki (ki − 1)

∑
j,m∈Ξi

1

wi

wij + wim
2

aijaimajm (5)

where wi = si
ki

=
∑
j∈N

wij

ki
is the average weight of edges incident to node i (hence

j,m ∈ Ξi). It should be noted, however, that a number of variations can be

used to compute the clustering coe�cient (Rubinov and Sporns, 2010), none

of which provide a single general-purpose measure to characterise clustering in

weighted complex networks ( Saramäki et al., 2007). Nevertheless, the global

clustering coe�cient is given as

C =
1

N

∑
i=1

ci (6)

or in a random graph

CΓ = p (7)

where p is the independent probability of drawing any of the M edges between

any two selected nodes.

A further closely related measure assesses the dynamical properties behind net-

8A clique of a graph G is a complete subgraph of G. The largest possible clique within G is
typically referred to as a maximum clique (Diestel, 2005; Harary, 1994; Watts and Strogatz,
1998).
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work interactions. This measure has arisen from research into the stability of

interactions within ecosystems. Indeed, the notion of stability�de�ned as the

presence of one or more equilibrium points or limit cycles at which the system

remains for at least one complete cycle after recovery when it faces a disturbing

force, or to which it returns if perturbed by the force (Connell and Sousa, 1983,

p. 790)�has long been the focus of much debate. In the �eld of ecology, for

example, research has considered the relationship between the complexity or

diversity of ecological systems and the stability of such systems (Connell and

Sousa, 1983; Levin and D'Antonio, 1999).

One of the measures at the centre of this debate is the May-Wigner network

stability model (Hastings, 1982; May, 1972, 1973, 1974; Wigner, 1957), which

de�nes the criteria for the probable stability or instability of a system of N

linear ordinary di�erential equations with random coe�cients �xed in time, as

N increases to in�nity.

The May-Wigner network stability condition

√
NΦσ2 < 1 (8)

is speci�ed across three parameters

� N , the size of the network in terms of the total number of nodes;

� Φ, the density of edge connectivity within the network; and

� σ, the average strength of interactions between the various vertices, which
can be approximated as

σ =

√√√√ ∑
i 6=j=1

(
aij −X

)
2

N − 1
(9)
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where X =

∑
i6=j=1

aij

N is the average connection between nodes. Note that in

the May- Wigner model, as it pertains to random graphs, the values of aij are

typically drawn from a statistical distribution with a zero mean and a standard

deviation, σ (see, Buckley and Bullock 2007; Buckley et al., 2005; Cohen and

Newman, 1985; Ulanowicz, 2001).

The May-Wigner condition shows that the more complex the system of inter-

actions captured in a graph becomes as either N or the network connectivity

increases, the more susceptible it becomes to destabilising shocks (May, 1972,

1974). However, the literature has questioned the generality of these results.

Counter examples to the May-Wigner conclusions include, but are not limited

to, the introduction of features such as trophic levels or hierarchical structures

of interaction through spatial blocks (McMurtrie, 1975), tree structures (Hogg,

et al., 1989), and multi-patch scaling of boreal forests (Jentsh, et al., 2000). Kao

(2010) detailed the cascading of causality between tiers in hieratical structures.

The underpinning assumption�that interaction coe�cients between spices can

usually be described as a random variable �xed in time�behind May's (1972,

1974) conclusions has further been proven false in its generality (Cohen and

Newman, 1995).

Sinha (2005) and Sinha and Sinha (2006) nevertheless have shown the univer-

sality of the May-Wigner theorem. To this end, Sinha and Sinha posit that

instability in one section of a network need not a�ect other elements of the

same network. Thus, even when complexity results in an unstable network (as

the May- Wigner theorem states), a non-equilibrium steady state can still exist

so that the surviving fraction of the network is able to remain stationary. In-

stability can result in the extinction of the proportion of species, but will not

eliminate all species (Sinha and Sinha, 2006). Consequently, in systems such as

�nancial networks with broker-dealer interactions, connected sets of peripheral
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nodes should exist so that the cascading contagion e�ect from the failure of a

highly connected node to those that are connected to it at diminishing degrees

in the hierarchical structure declines at the peripheries of the network.

In this instance, rather than simply measuring network stability at a global level

using the May-Wigner statistic, the centrality of nodes becomes an important

measure of network stability. One such centrality measure is the eigenvector

centrality, which assigns relative centrality scores to all nodes in a network.

The eigenvector centrality scores are de�ned for nodes in a network based on

their systemic signi�cance. The assignment of these scores also relies on the

principle that connections to high-scoring nodes contribute more to the score of

the node being considered rather than to connections the node has with low-

scoring nodes. The eigenvector centrality score for each node, i, in the graph

Gt (V,E) with N vertices captured in the adjacency matrix, A = (aij , t)
N
where

at time t, (aij , t) = 1 for i 6= j if node i and j are connected, and (aij , t) = 0,

otherwise is given by the function9

vi =
1

λ

∑
j∈Ξi

vj =
1

λ

∑
j∈N

Aijvj (10)

where Ξi, is the set of neighbours of i and λ, is a constant and is the largest

real part of the dominant eigenvalue, λmax of matrix A and its associated eigen-

vector. Equation 10 essentially states that because the connection of node i

to nodes that are themselves important makes the node itself more central, the

eigenvector centrality of node i is proportional to the average centrality of nodes

incident to node i. Rearranging and rewriting 10 in vector notation yields

Av = λmaxv (11)

9Note i 6= j must hold because it is assumed that there are no self-loops in the graph.
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where v is the vector of centralities v = {v1, v2, . . . , vN} and each vi element

of the vector represents the centrality value of the corresponding node. The

largest centrality value therefore conveys the node most central to the network.

It is noteworthy that despite the multiplicity of eigenvalues, λ, for which an

eigenvector solution exists, according the Perron-Frobenius theorem (Meyer,

2000, Chapter 8) the requirement that all elements of the eigenvector of a non-

negative matrix A be positive is satis�ed only by the dominant eigenvalue λmax.

This makes v the principal eigenvector of the adjacency matrix A.

3.4 Topological Construction of the US CDS Network

Representing the CDS market as a network of contractual obligations between

participating banks entails mapping the bilateral contracts between any pair of

banks. Nevertheless, because of the lack of individual contract�level data, the

construction of the CDS network work will attempt to �ll out the elements of the

associated adjacency matrix using (a) �nancial institution market shares and

(b) a random mapping of contractual obligations between institutions. In both

constructions the vertices of the graphs represent �nancial institutions, and the

edges between the nodes represent the bilateral obligations between any two

�nancial institutions.

3.4.1 Topological Construction of the US CDS Network

The initial topological construction of the US CDS network is undertaken using

the relative market shares of banks. In constructing the market share � based

US CDS network, the assumption is made that there exists at least two factors

in �nancial markets with bilateral trading that create persistent trading rela-

tionships, which in turn result in a small world network structure. The �rst of
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these factors is, as noted previously, the presence of broker-dealer relationships.

The second factor stems from apparent frictions that can result in multi-tiered

and discriminatory trading among classes of agents in �nancial markets. In the

literature on asset price determination, these frictions have been documented as

including exogenous trading costs (Acharya and Pederson, 2005), endogenous

search and bargaining related frictions (Du�e et al., 2005, 2007), and trading

delays and ine�ciencies arising from agents' bargaining through intermediaries

(Gale and Kariv, 2007; Gofman, 2011; Goyal and Vega- Redondo, 2007).

The small-world CDS network is constructed so as to ensure that banks with

an empirically large share of buy and sell side exposures receive preference in

assigning and weighting contractual linkages. Consequently, the probability of

a contract and, thus, an edge existing between banks i and j (where i is the

protection seller and j is the protection buyer) will depend on bank i's sell-side

market share and j's buy-side market share. Moreover, this market share-based

preference in contractual attachments implies that the distribution of directed

edges across banks will exhibit a power-law distribution whereby fewer nodes

account for a greater number of directed edges.10 In this instance the resulting

network is a member of the multiple classes of scale-free networks.11

On this basis, the following adjacency matrix can be de�ned:

10In its most basic form, a power-law distribution is of the form:

p (x = d; z) = d−z

ζ(z)

where z > 1 is the power-law parameter and the Rietmann zeta function that acts as a

normalising constant is given as ζ (z) =
∑∞

i=1

1
iz
. Reed and Hughes (2002) and Clauset et

al. (2009) provide a detailed review and real-world applications of power-law distributions.
11Amaral, Barthélémy, Stanley (2000) conducted an empirical review of scale-free networks

and other classes of small-world networks.
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

0 aijwij · · · · · · aiNwiN

ajiwji 0 · · · · · · ajNwjN

... · · ·
. . . · · ·

...

... · · · · · · 0
...

aNiwNi aNjwNj · · · · · · 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
j 6=i=1

aijwij =



Gri

Grj

...

...

GrN

N∑
j 6=i=1

ajiwji = {Bri, Brj , · · · , · · · , BrN}
(12)

with the conditions that individual sell-side exposures satisfy

∑
j∈ΞGr

i

SBrj Gri ≤ Gri (13)

and individual buy-side exposures satisfy

∑
j∈ΞBr

i

SGrj Bri ≤ Bri (14)

where across the rows of the matrix, aijwij = SGri Brj , and along the columns

of the matrix, ajiwji = SGrj Bri for

SGri = Gri
N∑

i=1
Gri

, the CDS sell-side market share of bank i,

SBri = Bri
N∑

i=1
Bri

, the CDS buy-side market share of bank i,

Gri, the gross notional/negative fair value of contracts for which banki is guar-

antor and

Gri, the gross notional/positive fair value of contracts for which banki is bene-

�ciary.

Any residual exposure is sold to or purchased by an external entity, the N th

agent. Note that the zeroes along the diagonal indicate that all contractual

24



obligations are made to other agents (see Upper 2007). Banks do not engage

in such practices as inter-book or internal trading or any other form of transfer

pricing that would mean a bank could have CDS obligations to itself.

3.4.2 Topological Construction of the US CDS Network

The random graph implementation of the US CDS market is based on the

Erd®s-Rényi (ER) model, which generally refers to any of two related models

that Erd®s and Rényi (1959, 1960 and 1961) and Gilbert (1959) introduced

for the construction of random graphs. Considering a set of random graphs,Γ,

with elements Γz (ñ,M)that are random graphs consisting of ñ nodes and a

possible M edges, there are ñ (ñ− 1) /2possible edges with which to connect

pairs of nodes. Selecting some subset of these edges produces the random graph

Γz (ñ,M), which is one of the possible 2ñ(ñ−1)/2 constituents of Γ.

In the Erd®s and Rényi (1959) orG (ñ,M)model each graph Γz (ñ,M)of the pos-

sible


 ñ

2


M

graphs is chosen uniformly at random. The Gilbert (1959)

or G (ñ, p)model, on the other hand, choses each graph Γz (ñ,M) randomly by

drawing edges between pairs of nodes according to some common probability p or

by deleting edges between pairs of nodes according to the probability q = 1− p.

Erd®s and Rényi, (1960, 1961) have shown that both approaches are equiva-

lent. Nevertheless, to maintain a similar level of connectivity to that under the

market-share US CDS network topology, the random graph implementation of

the US CDS Network follows the Gilbert (1959) model with

p = ΦMSN =
KMSN

N (N − 1)
(15)
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where KMSN is the total number of directed edges in the market-share network

and it is assumed that N = ñ. Each sell-side bank i is accordingly paired with

a buy-side bank j with the probability p.

In like manner to the market share�based US CDS market network, the random

graph implementation of the US CDS market network is represented in the

form of an adjacency matrix. Again, the aij are binary values that indicate the

existence of a contractual obligation between banks i and j. These connections

are initially selected as undirected edges, which are then transformed into two

directed edges assigned a uniformly distributed probability weighting

p
(
e
(−→
i, j
))
∼ U (0, 1) (16)

Consequently, the weighted elements of the random graph adjacency matrix are

given by the fraction of total protection sold by all banks as a proportion of the

probability weighting of edge e
(−→
i, j
)
to the total probability weighting o� all

edges in the random graph. That is,

ajiwji =
p
(
e
(−→
i, j
))

N∑
i=1

p
(
e
(−→
i, j
)) N∑

i=1

Gri (17)

Moreover, to ensure consistency in the construction of the randomly generated

graph over repeated simulation runs, an arbitrary seed value is used. The use

of a seed value is consistent with other implementations of the ER model for

generating random graphs. For example, the Los Alamos National Labora-

tory NetworkX Python language software package for the creation, manipula-

tion, and study of the structure, dynamics, and functions of complex networks

utilises an optional integer seed value as part of the construction of the er-

dos_renyi_graph(n, p, seed, directed) method.
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3.5 Topological Construction of the US CDS Network

Given the topological construction of the US CDS market network, further

analysis is conducted to quantitatively capture the systemic impact of the failure

of each of the �nancial institutions within the network. This is accomplished

with the sequential round-by-round algorithm that Fur�ne (2003) described.

Starting with the failure of the trigger bank, assuming contractual tear ups and

some recovery rate, γ, on the trigger bank's liabilities, subsequent banks j in

the �rst round of contagion, are assumed to fail if their direct bilateral net loss

from CDS exposures to the trigger bank exceeds some percentage threshold, ε,

of the bank's of Tier 1 Capital. In keeping with the topologically constructed

adjacency matrix, the �nancial failure condition is given by

(γaijwij − ajiwji) > εΠj (18)

where j ∈ DQ is the set of defaulting banks at round Q of the contagion process.

It follows from this that in later rounds of contagion associated with the

trigger bank's demise, further banks will subsequently fail if the total bilateral

losses for a bank m /∈ DQthat has not failed at round Q, de�ned as the sum

of their losses su�ered through contractual linkages with both the trigger bank

and those banks that failed in preceding rounds, exceeds bank m's sustainable

loss. That is,

(γaijwij − ajiwji) +
∑
j∈DQ

(γajmwjm − amjwmj)

 > εΠj (19)

Put more generally, for each subsequent iteration, Q, such that m remains

solvent until Q, default occurs if losses due to direct exposures to the set of

defaulted banks and the trigger bank exceeds bank m's remaining sustainable
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loss. That is,

(γaimwim − amiwmi) +
∑

j∈
Q−1⋃
r=1

Dr

(γajmwjm − amjwmj)

 > εΠm (20)

wherem /∈
{⋃

D1,
⋃
D2, . . . ,

⋃
DQ−1}and Q−1⋃

r=1
Dr is the set of defaulting banks

between rounds 1 and Q− 1 inclusive. The contagion process ends where there

are either no surviving banks or none of those that have survived fail at round

Q+ 1.

4 Data

The data are taken from the BIS data repository and the FDIC for the three time

periods 2004Q1, 2006Q4 and 2007Q4. The FDIC data are publically available

and can be found in the quarterly thrift and call reports that each FDIC-insured

bank in the US submits. The BIS data provide a semi-annual overview of the

global derivatives markets. The BIS data are used as a basis of inferring the buy

and sell exposures of monolines such as insurance companies. Speci�cally, for

the three time periods, monoline buy and sell side exposures are derived based

on their global market share as of 2006Q4 and the fraction of the total CDS

exposures globally accounted for by the participating US banks in the analysis

periods.

Figures 5 to 9 chart the CDS participation as well as Tier 1 capital data from

the FDIC reports. As Figure 5 shows, the period between 2004Q3 and 2007Q4
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Figure 5: FDIC Insured Banks CDS Market Participation: Gross Notional CDS
Credit Protection Bought and Sold

Note: The data are taken from the FDIC Call Report Schedule RC-L � Derivatives and O�-Balance
Sheet Items Item 7a.1 �Credit derivatives: Notional amounts, Credit default swaps� (RC-codes:
Guarantor, RCFDC968/RCONC968; Bene�ciary, RCFDC969/RCONC969).

Figure 6: FDIC Insured Banks Credit Derivatives Market Participation: Gross
Fair Value of Credit Derivatives Exposures

Note: The data are taken from the FDIC Call Report Schedule RC-L � Derivatives and O�-Balance
Sheet Items Item 7b.1 �Credit derivatives: Gross fair values� (RC-codes: Gross negative fair value,
RCONC220; Gross positive fair value, RCONC221).
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witnessed a signi�cant rise in the use of credit derivatives and, in particular, CDS

by the FDIC-insured banks. Much of this growth occurred between 2006Q1 and

2007Q4, at the height of the subprime mortgage bubble. By 2008Q1 CDS gross

notional outstanding buy and sell side positions had peaked at US$8.26tn and

US$7.98tn respectively before progressively declining until 2009Q2.

Over the same period gross notional positive and gross notional negative fair

values, which respectively represent the maximum possible net derivatives re-

ceivables and derivatives payables between net sellers of protection and net

buyers of protection that could be required upon the occurrence of a credit

event, also increase, peaking at US$1.08tn and US$1.01tn. However, unlike the

exposures at gross notional, exposures at fair value witness two periods of sharp

increases between 2007Q2 to 2008Q1 and 2008Q2 to 2008Q4. Note that with

gross notional exposures having peaked by 2008Q1, the second period of sharp

growth in gross fair value stems in part from the very high credit spreads and

potential of uncancelled liabilities or unhedged exposures at gross notional level

during the �nancial crisis of 2008-2009 following the subprime mortgage crisis

of 2006-2007.

At individual bank level, the pool of banks reporting gross notional exposures

is, in some cases, larger than those reporting at gross fair value. This is in

part a result of the mark-to-market nature of the fair value amounts versus

the historical value nature of gross notional amounts. For instance, in 2004Q1

Morgan Stanley reported US$0.01bn in gross notional sales of CDS protection.

However, at gross fair value, either the bank deemed that these positions had

no discernable market value, or they were simply not reported at fair value.

Moreover, the data show that the Top 5 US banks according to total gross

notional participation in the CDS market between 2004 and 2007 (Bank of

America, Citibank, HSBC, JPMorgan and Wachovia) consistently accounted
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Figure 7: Top 5 Banks as Percentage of Total FDIC Insured Banks CDS Market
Participation (Gross Notional)

Note: (1) Top 5 refers to the �ve FDIC-insured US banks with the largest gross notional in CDS
contracts between 2004Q1 and 2007Q4 as reported in the FDIC Call Report Schedule RC-L � Deriva-
tives and O�-Balance Sheet Items Item 7a.1 �Credit derivatives: Notional amounts, Credit default
swaps� (RC-codes: Guarantor, RCFDC968/RCONC968; Bene�ciary, RCFDC969/RCONC969).
These banks are Bank of America, Citibank, HSBC, JPMorgan and Wachovia. (2) The trend
in the data from 2008Q4 onwards is accounted for by a substantial expansion of exposures reported
by Goldman Sachs.

Figure 8: Top 5 Banks as Percentage of Total FDIC Insured Banks Credit
Derivatives Market Participation (Gross Fair Value)

Note: (1) Top 5 refers to the �ve FDIC-insured US banks with the largest gross notional in CDS
contracts between 2004Q1 and 2007Q4 as reported in the FDIC Call Report Schedule RC-L � Deriva-
tives and O�-Balance Sheet Items Item 7a.1 �Credit derivatives: Notional amounts, Credit default
swaps� (RC-codes: Guarantor, RCFDC968/RCONC968; Bene�ciary, RCFDC969/RCONC969).
These banks are, Bank of America, Citibank, HSBC, JPMorgan, and Wachovia. (2) This chart
is based on data listed in item 7b.1 �Credit derivatives: Gross fair values� (RC-codes: Gross nega-
tive fair value, RCONC220; Gross positive fair value, RCONC221). (3) The trend in the data from
2008Q4 onwards is accounted for by a substantial expansion of exposures reported by Goldman
Sachs.
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Figure 9: Credit Derivatives Exposures of JPMorgan Chase as a Proportion of
Total Credit Derivatives Exposures of the Top 5 FDIC Insured Banks (2004Q1
to 2007Q4)

Note: (1) Top 5 refers to the �ve FDIC-insured US banks with the largest gross notional in CDS
contracts between 2004Q1 and 2007Q4 as reported in the FDIC Call Report Schedule RC-L � Deriva-
tives and O�-Balance Sheet Items Item 7a.1 �Credit derivatives: Notional amounts, Credit default
swaps� (RC-codes: Guarantor, RCFDC968/RCONC968; Bene�ciary, RCFDC969/RCONC969).
These banks are Bank of America, Citibank, HSBC, JPMorgan, and Wachovia. (2) Gross fair
value data are taken as listed in item 7b.1 �Credit derivatives: Gross fair values� (RC-codes: Gross
negative fair value, RCONC220; Gross positive fair value, RCONC221).

for over 92% and averaged 99% of the FDIC-insured US banks' buy and sell

CDS exposures in terms of both gross notional and gross fair values. Of these,

JPMorgan Chase consistently ranked as having the largest credit derivatives

exposures in terms of both CDS gross notional and credit derivatives gross fair

values. Indeed, between 2004Q1 and 2007Q4 JPMorgan had expanded its CDS

gross notional exposures on both buy and sell sides from US$330.06bn and

US$292.79bn to US$4.02tn and US$3.86tn respectively. Likewise JPMorgan's

credit derivatives gross positive fair value rose from US$2.94bn to US$115.15bn,

whilst credit derivatives exposures reported at gross negative fair value grew

from US$1.71bn to US$101.76bn.

It is worth noting that between 2004Q1 and 2007Q4 JPMorgan accounted for

over 42% of the credit derivatives market participation by the Top 5 FDIC-

insured US banks. Reported at gross notional, JPMorgan averaged 50% of
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both buy and sell side exposures of the Top 5. At gross fair value, the bank's

exposures progressively declined from 72% of the total exposure of the top �ve in

2004Q1; however, as of year-end 2007, both the gross positive and gross negative

fair value exposures of JPMorgan still averaged 43% of the credit derivatives

exposures of the Top 5 banks.

With regards to the Tier 1 capital holdings, the data show that FDIC-insured

US banks continued to expand their capital base. However, the increase in

capital holdings is betrayed by information gleaned from a comparison of this

capital with sell-side credit derivatives exposures. In particular, gross negative

fair value exposures increase sharply as a proportion of Tier 1 capital. Having

started as low as under 1% of Tier 1 capital, credit derivatives measured at gross

negative fair value as a proportion of Tier 1 capital began to spiral upwards from

2004Q4, reaching as much as 190% of Tier 1 capital by 2008Q4. Looking only

at the period between 2004Q4 and 2007Q4, Table 1 breaks down this growth

in the relative size of gross negative fair value exposures compared to Tier 1

capital. Table 6.1 shows that the primary drivers for the observed rise in credit

derivatives measured at gross negative fair value as a proportion of Tier 1 capital

were the Top 5 banks. Certainly, for the non-Top 5 banks, credit derivatives

exposures measured at gross negative fair value accounted for only 0.12% of

Tier 1 capital as of year-end 2007. By contrast, having accounted for 1.13% of

Tier 1 capital at the end of 2004, credit derivatives exposures of the Top 5 US

banks measured at gross negative fair value had come to represent a staggering

85% of their Tier 1 capital by 2007Q4.
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Table 1: Credit Derivatives Exposures and Tier 1 Capital 2004Q to
2007Q4 (US$ billions)

Banks Call Report Item 2004Q4 2005Q4 2006Q4 2007Q4

Top 5 Banks

Tier 1 capital 175.84 213.61 248.02 285.96
CDS gross notional

1,183.03 3,116.53 4,392.48 7,877.14
purchased
CDS gross notional sold 1,099.97 2,673.45 4,382.76 7,715.06
Gross positive fair value 3.47 21.56 22.45 266.05
Gross negative fair value 1.99 19.15 18.88 243.19
Gross negative fair value

1.13% 8.96% 7.61% 85.04%
as percentage of capital

Other Banks

Tier 1 capital 116.15 116.61 133.19 133.88
CDS gross notional

36.59 24.40 25.41 41.93
purchased
CDS gross notional sold 22.47 2.25 2.31 3.77
Gross positive fair value 0.11 0.10 0.04 1.15
Gross negative fair value 0.08 0.06 0.02 0.16
Gross negative fair value

0.07% 0.05% 0.02% 0.12%
as percentage of capital

All Banks

Tier 1 capital 341.66 383.14 440.85 482.36
CDS gross notional

1,219.62 3,140.94 4,417.89 7,919.07
purchased
CDS gross notional sold 1,127.11 2,681.08 4,389.02 7,723.03
Gross positive fair value 3.58 21.65 22.49 267.20
Gross negative fair value 2.07 19.21 18.90 243.35
Gross negative fair value

0.61% 5.01% 4.29% 50.45%
as percentage of capital

Note: (1) Top 5 refers to the �ve FDIC-insured US banks with the largest gross notional in CDS
contracts between 2004Q1 and 2007Q4 as reported in the FDIC Call Report Schedule RC-L � Deriva-
tives and O�-Balance Sheet Items Item 7a.1 �Credit derivatives: Notional amounts, Credit default
swaps� (RC-codes: Guarantor, RCFDC968/RCONC968; Bene�ciary, RCFDC969/RCONC969).
These banks are Bank of America, Citibank, HSBC, JPMorgan, and Wachovia. (2) Gross fair
value data are taken as listed in item 7b.1 �Credit derivatives: Gross fair values� (RC-codes: Gross
negative fair value, RCONC220; Gross positive fair value, RCONC221). (3) Tier 1 Capital data
are taken as reported in the FDIC Call Report Schedule RC-R � Derivatives and O�-Balance Sheet
Items Item 7a.1 �Credit derivatives: Notional amounts, Credit default swaps� (RC-codes: Guaran-
tor, RCFDC968/RCONC968; Bene�ciary, RCFDC969/RCONC969).

It should nevertheless be noted that under normal market conditions and where

legally enforceable bilateral netting agreements exist, exposures with negative

fair values can be used to o�set contracts with positive fair values. The resulting

net current credit exposure (NCCE)�the greater of the sum of all mark-to-

market values (both positive and negative) of the individual transactions subject
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to bilateral netting agreement or zero�across all counterparties will therefore

in�uence the amount of capital held. This is because regulators such as the

OCC utilise the NCCE as a primary metric when they evaluate the credit risk

associated with banks' derivatives exposures.

5 Results

Experiments are conducted with both gross notional and gross fair values. The

former are used to identify potential losses when the failure of the trigger bank

results in unmet contractual obligations on the reference entity on which the

CDS protection is taken, and those obligations cannot be transferred. Gross

fair values are used to signify the losses incurred on credit derivatives when a

counterparty fails to meet market value cash �ow obligations; however, CDS

contracts can be easily replaced. Furthermore, experiments are conducted as-

suming 0% and 50% recovery rates on failed banks' contractual liabilities. Be-

cause the objective of this research is to determine whether regulatory rules

that encourage the use of credit derivatives had an in�uence on the structure of

this market over time, snapshots of the US CDS network described in section 3

above are assessed at three distinct periods, 2004Q4, 2006Q4 and 2007Q4.

5.1 Network Characteristics

The US CDS networks under the market share and random graph topological

constructs for each of the three periods using both gross notional and gross fair

values are visually depicted in Figures 6.10 and 6.13 using a spatial radial tree

layout�a means of locating nodes on a graph such that the root node is placed

at the center of the graph and the child-nodes are located in a circular fashion

around the root. In all four �gures, banks that operate exclusively as CDS
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buyers are represented by the vertices coloured in dark blue. Net CDS buyers

are identi�ed by the light blue nodes. Exclusive CDS protection sellers are

represented in dark red, and net protection sellers are highlighted in light pink.

Net neutral entities�that is, those with equal buy and sell side exposures�are

marked white, whereas the black nodes depict the defaulted banks. Grey nodes

represent banks that, although solvent, are unconnected to other banks in the

network.

Furthermore, banks and insurance companies are represented as the circular

nodes, whereas the outside entity or non-US bank entity used to capture all

residual buy and sell side exposures is depicted as the triangular node. FDIC-

insured US banks are further identi�ed by their empirical market share. Conse-

quently, the size of the node representing each participating bank is correlated

to the relative market share of that bank's buy and sell side exposures.

Note that under the market-share construction of the US CDS network, using

gross notional values, JPMorgan is a net protection seller in all three periods.

By contrast, using gross fair values, JPMorgan is a net protection buyer during

2004Q1, butit becomes a net protection seller in 2006Q4 and 2007Q4. Further-

more, unlike the market-share construction, which is governed by the empirical

data, the random graph construction merely takes the aggregated sell-side expo-

sures and randomly distributes them between the banks. Consequently, protec-

tion buyers such as Merrill Lynch in 2004Q1 under the empirical data � derived

market-share network become protection sellers. Similarly, protections sellers

such as JPMorgan in the 2006Q4 market-share network become protection buy-

ers under the random graph construction of the US CDS network. Finally, the

insurance companies appear as the root node in the market- share networks as

a result of the approximation from the global CDS market data.
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Figure 10: Market Share Constructed CDS Network (CDS Gross Notional)
2004Q1, 2006Q4 and 2007Q4
2004Q1

2006Q4

2007Q4

Notes: (1) The empirically constructed market share CDS network (gross notional) for US banks
and non-US bank �nancial intermediaries (the triangle): Using the spatial radial tree layout (top:
2004Q1; middle: 2006Q4; bottom: 2007Q4). (2) Weights are assigned according to empirically
observed CDS market share on both buy and sell side. (3) Node sizes are determined by empirical
market-share data.
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Figure 11: Erd®s-Rényi Random Graph Construction of the US CDS Network
(CDS Gross Notional) 2004Q1, 2006Q4 and 2007Q4
2004Q1

2006Q4

2007Q4

Notes: (1) The Erd®s-Rényi random graph CDS network (gross notional) for insured US banks,
insurance companies, and non-US bank or outside entity (the triangle): Using the spatial radial
tree layout (top: 2004Q1; middle: 2006Q4; bottom: 2007Q4). (2) Weights are assigned according
to a uniform random distribution (with a seed value of 77) of the total empirically observed CDS
gross notional sold. (3) Node sizes are determined by empirical market-share data.
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Figure 12: Market Share Constructed CDS Network (Credit Derivatives Gross
Fair Value) 2004Q1, 2006Q4 and 2007Q4
2004Q1

2006Q4

2007Q4

Notes: (1) The empirically constructed market share CDS network (gross notional) for US banks
and non-US bank �nancial intermediaries (the triangle): Using the spatial radial tree layout (top:
2004Q1; middle: 2006Q4; bottom: 2007Q4). (2) Weights are assigned according to empirically
observed credit derivatives gross fair value market share (positive and negative). (3) Node sizes are
determined by empirical market-share data.
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Figure 13: Erd®s-Rényi Random Graph Construction of the US CDS Network
(Credit Derivatives Gross Fair Value) 2004Q1, 2006Q4 and 2007Q4
2004Q1

2006Q4

2007Q4

Notes: (1) The Erd®s-Rényi random graph CDS network (gross notional) for insured US banks,
insurance companies, and non-US bank or outside entity (the triangle): Using the spatial radial
tree layout (top: 2004Q1; middle: 2006Q4; bottom: 2007Q4). (2) Weights are assigned according
to a uniform random distribution (with a seed value of 77) of the total empirically observed credit
derivatives gross negative fair value. (3) Node sizes are determined by empirical market- share data.

'
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The results re�ected in Tables 2 to 7 are derived from simulating the failure

of each entity in the US CDS network. The results from the gross notional

value based network assuming 0% recovery are listed in Tables 2 and 3 for the

market-share network and random graph, respectively. In Table 4 the simulated

results from the empirical market share�derived network are collated, assuming

50% recovery on contractual liabilities of the defaulting bank. Similarly, Tables

5 lists simulation results based on the gross fair value constructed market-share

network under the assumption of 0% recovery rates. Tables 6 and 7, conversely,

assume a 50% recovery rate on liabilities at gross fair value for both empiri-

cal market share and random graph topological constructions of the US CDS

network.

The results from the simulations are as follows: Firstly, with respect to the

market-share networks, the positive skewness of between 2.9 and 3.3 combined

with the large positive kurtosis (leptokurtic) measuring between 7.97 and 11.76,

depending on the trading data used, indicates that the degree distribution has

a high peakedness relative to the normal distribution and that the mass of the

distribution is concentrated on the left tail (i.e., longer right tail). This is con-

sistent with the existence power laws reported in small-world networks in which,

as in this instance, a few banks have a large number of buy-side and sell-side

connections to other banks. Moreover, given a critical value of 0.1 as prescribed

by Clauset et al (2009, p.3 and 17), the test statistic listed in the tables indicate

that there is statistically signi�cant evidence that the possibility of power laws

in the CDS network data cannot be rejected. Thus, persistent trading rela-

tionships such as broker-dealer relationships and discriminatory trading among

a few large players imply a hierarchical structure. By contrast, the recorded

moderate kurtosis and skewness under the ER random graph constructed US

CDS networks are consistent with the probability distribution used to derive
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contractual obligations among the banks. Certainly, under the 2004Q1 US CDS

network constructed as a random graph, the skewness of -0.2 to 0.79 and kur-

tosis of -0.38 to 1.24 suggest a degree distribution with a shape fairly similar to

a uniform distribution. Consequently, there is limited evidence of hierarchical

structures in trading relationships in the construction of the US CDS network

as an ER random graph.

The second observation from the simulations across all three time periods is

that the clustering coe�cient is larger in the market-share construction of the

US CDS network than in the ER random graph network topology. This dif-

ference is signi�cantly higher when data that pertain to the gross fair value of

credit derivatives exposures are used. Furthermore, although the market-share

networks exhibit greater clustering, the progression of this clustering over time

di�ers depending on the data used to construct the US CDS network. Mea-

suring exposures at gross notional suggests that the clustering coe�cient in-

creased year-on-year (the clustering coe�cient of 0.21 witnessed in the 2004Q1

simulation compared to 0.23 and 0.24 in 2006Q4 and 2007Q4, respectively) as

regulations fostering the escalating use of CDS became entrenched. Conversely,

when exposures are measured at gross fair value, the clustering coe�cient was

to observed spike to 0.50 in 2006Q4; however, in both 2004Q4 and 2007Q4 the

clustering coe�cient was 0.26.

'

The variance-to-mean ratios, which characterise the distribution of contractual

obligations between the agents in terms of how dispersed or clustered these con-

tractual obligations are compared to a standard statistical model, do, however,

suggest a large degree of clustering. Moreover, this clustering with regard to the

market-share network topology is relatively greater in 2006Q4 and 2007Q4 using

the gross fair value of exposures. This is not as clear when the gross notional
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value of exposures are used. Although the degree of clustering in relation to

protection selling does increases between 2004Q1 and 2007Q4, there is a decline

on the protection buying side. The ER random graph network topology, by

contrast, with variance-to-mean ratios ranging from 0.55 to 1.21, shows little

evidence of clustering using either gross notional or gross fair values.

Finally, the last four columns of Tables 2 to 7 relate to the systemwide aver-

age losses of core capital and protection cover for the entire network upon the

triggered failure of each of the �nancial entities, assuming a sustainable loss

threshold of ε = 20% and liability recovery rates of γ = 0% and γ = 50%

. Comparing the topological constructions, the ER random graph framework

results in more widespread losses across the simulated US CDS network. Mea-

suring exposures at gross notional shows that the random graph gives rise to

Tier 1 capital losses of approximately 18.29% of the available capital in 2004Q1

prior to the simulated defaults, compared to the 4.87% under the market-share

network topology. This dissimilarity is even more prominent as losses increase

over time, so that by 2007Q4 the defaults simulated in the random graph gen-

erate losses, on average, over 10 times as large as those under the market-share

network. Underpinning this is the clustering of exposures between a few large

entities in market-share network compared to the more dispersed sharing of

exposures under the ER random graph. Comparing the contagion �ow of the

most devastating FDIC-insured bank default in the simulated 2007Q4 market

share network, JPMorgan, to the impact of the same bank under the ER ran-

dom graph constructed networks, it is clear that the contagion chain extends

farther under the random graph (Figure 14). Whereas, losses are limited to

the highly interconnected �rst tier of banks under the market-share network in

the random graph, defaults cascade down to the more peripheral banks such as

Citizens Bank of Pennsylvania.
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Figure 14: Impact of the Failure of JPMorgan: Market Share vs Erd®s-
Rényi Random Graph Constructed US CDS Network (2007Q4 Gross Notional
Amounts)
2007Q4: Market Share with 0% Recovery

2007Q4: Erd®s-Rényi Random Graph with 0% Recovery

2007Q4: Market Share with 50% Recovery

Notes: (1) Simulations assume a sustainable loss threshold ε = 20% of Tier 1 capital. (2) The
recovery rate on defaulting bank liabilities is γ = 0% for top and middle contagion chains and
γ = 50% for bottom contagion chain. (3) The rings represent the contagion round. The �nal round
is the point at which the network stabilises following the failure of the trigger bank.
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More speci�cally, Figure 14 shows that under the market-share construction

with exposures measured at gross notional assuming 0% recovery, the failure of

JPMorgan results in the demise of Bank of America, Citibank, and HSBC, which

are unable to cover their combined loss of US$1.66tn with their sustainable loss

threshold of 20% of their available Tier 1 capital. The collapse of these three

banks has a combined impact of bringing down Bank of New York (BONY)

before the contagion chain terminates. To neutralise this chain of losses, a

suggested injection of US$1.7tn in core capital would have been required.

By contrast, under the ER random graph the contagion chain is much more

devastating. Starting with the failure of Wells Fargo due to the loss of its

randomly allocated US$121.65bn in gross notional exposures to JPMorgan, it

proceeds to bring down Deutsche Bank and SunTrust. The cascading of losses

continues for an additional four rounds, with a total of 23 banks defaulting. The

simulation suggests an additional US$1.47tn in Tier 1 capital would be required

to prevent the failures.

It is worth noting that assuming a recovery rate of 50% on defaulting banks'

liabilities signi�cantly reduces the amount of depleted Tier 1 capital from the

average failure. Indeed, based on gross notional exposures under the market-

share US CDS market network, 2007Q4 core capital losses drop from 25.19% to

14.19% and from 15.36% to 9.15% for 2006Q4. There is, however, only a 0.79%

impact of a 50% recovery rate on 2004Q1 gross notional exposures compared to

the 0% recovery rate scenario. This would suggest that banks relying on CDS

protection became progressively undercapitalised. Indeed, the bottom panel of

Figure 14 shows that, even with a 50% recovery rate, the simulated 2007Q4

failure of JPMorgan still results in the demise of Bank of America, Citibank

and HSBC. It is estimated that this contagion chain would require an additional

US$910.29bn in order to counteract.

51



Figure 15: Impact of the Failure of the Monoline: Market Share vs Erd®s- Rényi
Random Graph Constructed US CDS Network (2007Q4 Gross Fair Value)
2007Q4: Market Share with 0% Recovery

2007Q4: Erd®s-Rényi Random Graph with 50% Recovery

2007Q4: Market Share with 50% Recovery

Notes: (1) Simulations assume a sustainable loss threshold ε = 20% of Tier 1 capital. (2) The
recovery rate on defaulting bank liabilities is γ = 0% for top and middle contagion chains and
γ = 50% for bottom contagion chain. (3) The rings represent the contagion round. The �nal round
is the point at which the network stabilises following the failure of the trigger bank.

Accounting for credit exposures at gross fair value, the simulations suggest that
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the US CDS market retained at the same level of stability in 2007Q4 as it did in

2004Q1. Recorded losses under the market-share network, on average, did not

exceed 4.20%, and assuming a 50% recovery rate, simulated losses declined from

the 4.01% recorded for 2004Q1 to 3.48% in 2007Q4. The simulations further

show that although the ER random graph US CDS market network topology

results in a greater number of defaults than the market-share network does, on

a bank-by-bank basis, only where a recovery rate of 0% is assumed will the

market-share network exhibit cascading defaults. Moreover, this result only

occurs in 2006Q4, when Wachovia is the trigger bank, and in 2007Q4 in the

case of JPMorgan and the monoline (Figure 15).

Accordingly, when risk capital is aligned with mark-to-market valuation of credit

derivatives exposures, the simulation results indicate that, on average, FDIC-

insured banks were more than adequately capitalised to withstand losses from

the failure of participants in the CDS market. Indeed, simulated defaults, as-

suming 50% recovery under both market-share and ER random graph network

topologies, yield almost identical results with respect to the erosion of Tier 1

capital. This is in spite of the larger losses CDS cash �ow, of 9.58% to 12.87%,

in the settlement chain under the ER random graph.

Whilst the abovementioned has focused on recovery rates of 50% and 0%, it is

worth noting that by increasing recovery rates progressively from 0% to 60%,

core capital losses generally tended to decrease in a linear and consistent fashion

across all trigger banks. The loss in CDS cover nevertheless was observed to be

dependent on whether the defaulting bank was a net protection buyer or net

protection seller. For net protection buyers such as Bank of America, defaults

tended to result in a constant loss of CDS cover regardless of the assumed re-

covery rate. Triggered failures of net protection sellers however, gave rise to a

stepped process of losses in CDS cover. Declining loss of CDS cover was never-
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theless only showed a material impact of US$29.78bn in 2004Q4 shifting from a

50% recovery rate to a 60% recovery rate assuming the failure of JPMorgan. For

both 2006Q4 and 2007Q4 the impact of shifting from an assumed 0% recovery

rate to 60% recovery rate was less than US$2bn or approximately 0.02% of total

initial CDS cover.

5.2 Systemic Risk and the Role of Banks and Monolines

Tangential to the abovementioned is the assessment of the evolution of the

role that market participants played over time; speci�cally, the extent to which

certain institutions potentially evolve to play a more central role within the US

CDS market. Listed in Table 8 are the eigenvector centrality scores of the top

5 ranking banks, the monoline, and others. Centrality scores are given for both

gross notional and gross fair value based market-share networks over the three

periods.

With exposures measured at gross notional outstanding, Table 8 shows that, on

average, the centrality scores increased between 2004Q1 and 2007Q4. Interest-

ingly, the observations suggest that, with a 2004Q1 centrality score of 0.296 and

a 2007Q4 centrality score of 0.297, monolines relative to other entities remained

at the same level of importance within the US CDS market. By contrast, where

the credit risk associated with credit derivatives exposures are accounted for

at gross fair value, monolines' centrality is observed to decline. Having as a

sector been ranked as the third most important entity within the network, the

monolines become the �fth most central participant in the US CDS market by

2007Q4.
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Table 8: Systemic Signi�cance of CDS Market Participants under the
Market Share Based Network Topology 2004Q1, 2006Q4 and 2007Q4

Gross Notional Outstanding Gross Fair Value

Banks 2004Q1 2006Q4 2007Q4 2004Q1 2006Q4 2007Q4

Bank of
0.188 0.273 0.315 0.100 0.195 0.312

America N.A.

Citibank N.A. 0.312 0.286 0.286 0.137 0.249 0.396

HSBC Bank
0.08 0.143 0.121 0.121 0.135 0.104

USA

JPMorgan
0.608 0.633 0.607 0.570 0.602 0.524

Chase Bank

Wachovia
0.066 0.050 0.039 0.025 0.040 0.056

Bank N.A.

Others 0.003 0.0001 0.0001 0.002 0.0001 0.0000

Monolines 0.296 0.295 0.297 0.288 0.300 0.295

Non-US Bank
0.629 0.590 0.589 0.749 0.655 0.609

Outside Entity

Network
0.061 0.066 0.068 0.074 0.075 0.070

Average

Note: (1) Eigenvectors centrality scores are computed in Mathworks MatLab 2012b as the singular
value decomposition normalised roots of the characteristic polynomial of the weighted adjacency
matrices. (2) Selection of the Top 5 listed banks is based on their ranking across all three periods
and both gross notional and gross fair value datasets. (3) As the source and destination of residual
buy and sell-side exposures, eigenvector centrality scores of the non-US bank outside entity are high
by construction.

The results further indicate that although the peripheral institutions had little

if any signi�cance to the US CDS market, banks such as Bank of America,

Citibank, and HSBC became increasingly more important. Bank of America,

for example, having had the �fth highest eigenvector centrality score of 0.188 in

2004Q1, progressively became the third most important entity within US CDS

market by 2007Q4, with a centrality score of 0.315 based on the gross notional

amount outstanding. Although Citibank became signi�cantly less central in

respect to gross notion outstanding exposures, both it and HSBC witnessed

increased centrality rankings by 2007Q4 using gross fair value data.

Furthermore, it is noteworthy that, by construction, the non-US bank outside

entity is expected to have the highest centrality ranking because of its represen-
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tation as the remaining market segment and its role as the source and destination

of all residual exposures. However, as the results show, by 2006Q4, JPMorgan

had surpassed non-US bank outside entity where contractual obligations are

measured in terms of the gross notional amount outstanding. This particularly

illustrates the evolving systemic signi�cance of the failure of JPMorgan and the

resulting capital injections required to prevent those �nancial institutions to

which it is heavily connected from collapsing, having lost the credit protection

they had acquired from JPMorgan.

6 Conclusion

Using data on FDIC-insured US banks, this chapter assessed the ability of regu-

lators to determine the ex post evolution of systemic risk associated with the use

of CDS and, more generally, credit derivatives following the introduction of reg-

ulatory rules under Basel II and the Joint Agencies Rule 66 (Federal Regulation

56914 and 59622), which encouraged synthetic securitisation. Because of the

lack of contract-level data, a network of contractual obligations between banks

was constructed by using market share and a random graph network topology.

Furthermore, because of the intrinsic nature of CDS contracts as guarantees

against the face value of referenced credit exposures as well as accounting rules

that stipulate exposures must be reported at fair value or mark-to-market basis,

the analysis used both gross notional outstanding and gross fair value measures

of bank exposures. The latter were treated as the guide to capital requirements

under normal-functioning market conditions where contracts are easily replaced

without loss as de�ned under fair value accounting rules such as IAS 39 and

IFRS 9. Gross notional outstanding, on the other hand, was used to signify

the loss of credit protection under abnormal circumstances such as a �nancial
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crisis; where normal market conditions as de�ned by international accounting

rules does not apply, and contracts are not easily replaced. Under these circum-

stances, the failure of a CDS counterparty results in not only the termination of

payments under the premium leg of transactions, but also the loss of credit pro-

tection and the requirement to raise additional risk capital from the repatriation

of the underlying credit risk.

Contagion chains under both network topologies and measures of bilateral con-

tractual obligations were compared assuming 0% and 50% recovery rates on

liabilities. The random graph topology resulted in the widespread decimation

of the US CDS market, where 0% recovery rates are assumed both at gross

notional and gross fair value. By contrast, under the assumption of 50% re-

covery and normal trading conditions, capital losses remained on average well

below the assumed sustainable loss of 20% of Tier 1 capital. Indeed, stress test-

ing showed that in general banks were adequately capitalised to weather losses

from credit derivatives counterparty failures under normal market conditions.

Conversely, at the height of a market crisis in which bilateral exposures are

not easily replaced and the face value of reference exposures are repatriated,

the results showed that even assuming a 50% recovery rate in 2007Q4 leads

to unsustainable losses requiring, on average, a minimum of 14% more Tier 1

capital than was available. Moreover, the additional Tier 1 capital required

to, on average, ameliorate market immunity to failures of participating institu-

tions progressively increase over time. Interestingly, average capital injections

to maintain market stability in 2004Q1 were similar (between 4% and 5%) under

the market-share based network topology whether contractual obligations were

measured at gross fair value or gross notional outstanding.

Consequently, it is clear that, although CRT clauses in the Basel II regulations

assumed that on-balance sheet credit risk can be transferred away and capital
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requirements calculated according to ongoing credit derivatives counterparty

exposures, the resulting risk capital became increasingly insu�cient to protect

banks against the repatriation of risk once counterparties failed. Conforming

with Pozen's (2009) statement, the bailout of banks and transfer of so-called

toxic assets that underlie credit derivatives exposures to governments can at

best be attributed only to fair value accounting insofar as it drove the deter-

mination of risk capital rather than the fundamentals of the transactions. The

results further suggest that regulators would have been able to monitor and

identify the evolution of systemic risk, systemically important institutions, and

the escalating capital inadequacy had a crisis market been the basis of measuring

the credit risk from credit derivatives.

However, it is important to caution that the abovementioned results are driven

by the available data and market segment upon which the analysis is focused. It

is thus expected that a larger data pool and extended market reach into other

interbank interactions in the repo markets and markets for other derivatives

products, as can be captured in a directed hypergraph analysis, would enrich

the results.12 Nevertheless, with appropriate analysis and use of database-driven

multi-agent computational models such as the one presented here, regulators

can potentially identi�ed systemic implications of the policy measures that they

implement, and corrective measures can be assessed and introduced much sooner

without the requirement for taxpayer bailouts.

The design and implementation of regulatory policy is a complex and an ongo-

ing undertaking with agents whose actions not only impact other agents, but

also the environment within which they operate. The analysis presented here

12Directed hypergraphs are much like standard directed graphs. However, whereas standard
arcs connect a single tail node to a single head node, hyperarcs/hyperedges connect a set of
tail nodes to a set of head nodes. In this regard a small number of banks may participate in
other markets which the majority of those in the CDS may not directly operate in but the
majority become subject to spill-overs from failures arising from exposures of the minority in
those markets.
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has highlighted the oversimpli�cation of Currie's (2005) regulatory policy design

beliefs of that regulators can de�ne models to which banks would adhere and

from which policy makers would gain the desired social welfare outcomes. As

illustrated here, when underlying risk is not fully captured in capital require-

ments, the very act of banks' adhere to regulatory policy can, in fact, propagate

far-reaching systemic failures.

Finally, it is worth noting that the network models assessed here were based

on bilateral contracts between counterparties. From a policy e�cacy perspec-

tive, and in view of recent e�orts towards the centralised clearing of CDS and

other OTC derivatives under the July 21, 2010 Dodd�Frank Wall Street Reform

and Consumer Protection Act (Pub.L. 111-203, H.R. 4173; commonly referred

to as Dodd-Frank) and the August 16, 2012 Regulation 648/2012 or European

Markets Infrastructure Regulation (EMIR), it would be interesting to compare

these results with those that would be derived from a model in which the ulti-

mate counterparty was a central clearing counterparty (CCP). In such a study,

bilateral contracts between individual �rms would contain Give Up� clauses

permitting an executing broker to enter trade positions with the CCP on behalf

of the individual �rms.13 In addition to the topological network analysis of the

CCP model, the study could use network �ow models to assess the potential for

gaming of CCP rules and determine capital requirements to counter the impact

of failures of individual institutions as well as the CCP.

'
'
'
'
'
'

13Further reading on this line of study would include but not limited to Acharya and Bisin,
2011; Bank of Canada, 2011; Bech and Atalay, 2008; Beyeler et al., 2007; BIS, 2010; Bliss and
Papathanassiou, 2006; Bliss and Steigerwald, 2006; Du�e et al, 2010; Fleming et al., 2010;
Galbiati and Soramaki, 2012; Gregory, 2010; Iori et al., 2008; Kern et al., 2011; Litan, 2010;
Wetherit et al., 2008; Wilkins and Woodman 2010
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